Кольцо вычетов

Кольцо вычетов

Сравнение по модулю натурального числа — отношение эквивалентности на множестве целых чисел, связанное с делимостью. Оно даёт возможность работать с системой чисел, более простой чем целые числа, в которой значения «зацикливаются» (повторяются) после достижения определенного значения.

В дискретной математике, для сравнений по модулю используется также термин модульная (или модулярная) арифметика.

Содержание

Определения

Говорят, что два целых числа a и b сравнимы по модулю натурального числа n, если при делении на n они дают одинаковые остатки.

Эквивалентные формулировки: a и b сравнимы по модулю n, если их разность a - b делится на n, или если a может быть представлено в виде a = b + kn, где k — некоторое целое число.

  • Пример: 32 и −10 сравнимы по модулю 7, так как 32 = 7∙4 + 4, −10 = 7∙(-2) + 4.

Утверждение «a и b сравнимы по модулю n» записывается в виде:

a\equiv b\pmod n.

Свойства

Отношение сравнения является отношением эквивалентности и обладает многими свойствами обычных равенств. Например, их можно складывать и перемножать: если

a_1 \equiv b_1 \pmod n; \qquad a_2 \equiv b_2 \pmod n,

то

a_1a_2 \equiv b_1b_2 \pmod n; \qquad a_1+a_2 \equiv b_1+b_2 \pmod n.

Сравнения, однако, нельзя, вообще говоря, делить друг на друга или на другие числа. Пример: 14 \equiv 20 \pmod 6, однако, сократив на 2, мы получаем ошибочное сравнение: 7 \equiv 10 \pmod 6. Правила сокращения для сравнений следующие.

  • Можно делить обе части сравнения на число, взаимно простое с модулем: если ac \equiv bc \pmod n и НОД~(c,n)=1, то a \equiv b \pmod  n.
  • Можно одновременно разделить обе части сравнения и модуль на их общий делитель: если ac \equiv bc \pmod {nc}, то a \equiv b \pmod  n.

Нельзя также выполнять операции со сравнениями, если их модули не совпадают.

Другие свойства:

  • Если a \equiv b\pmod {m_1} и a \equiv b\pmod {m_2}, то a \equiv b \pmod m, где m = [m1,m2].
  • Если a \equiv b \pmod m, то a, b сравнимы по любому модулю — делителю m.

Классы вычетов

Множество всех чисел, сравнимых с a по модулю n называется классом вычетов a по модулю n, и обычно обозначается [a]n или \bar a_n. Таким образом, сравнение a\equiv b\pmod n равносильно равенству классов вычетов [a]n = [b]n.

Поскольку сравнение по модулю n является отношением эквивалентности на множестве целых чисел \mathbb{Z}, то классы вычетов по модулю n представляют собой классы эквивалентности; их количество равно n. Множество всех классов вычетов по модулю n обозначается \mathbb{Z}_n или \mathbb{Z}/n\mathbb{Z}.

Операции сложения и умножения на \mathbb{Z} индуцируют соответствующие операции на множестве \mathbb{Z}_n:

[a]n + [b]n = [a + b]n
[a]_n\cdot [b]_n=[a\cdot b]_n

Относительно этих операций множество \mathbb{Z}_n является конечным кольцом, а если n простое — конечным полем.

Решение сравнений

Сравнения первой степени

В теории чисел, криптографии и других областях науки часто возникает задача отыскания решений сравнения первой степени вида:

ax \equiv b\pmod {m}.

Решение такого сравнения начинается с вычисления НОД(a, m)=d. При этом возможны 2 случая:

  • Если b не кратно d, то у сравнения нет решений.
  • Если b кратно d, то у сравнения существует единственное решение по модулю m / d, или, что то же самое, d решений по модулю m. В этом случае в результате сокращения исходного сравнения на d получается сравнение:
a_1 x \equiv b_1\pmod {m_1}

где a1 = a / d, b1 = b / d и m1 = m / d являются целыми числами, причем a1 и m1 взаимно просты. Поэтому число a1 можно обратить по модулю m1, то есть найти такое число c, что c\cdot a_1\equiv 1\pmod{m_1} (другими словами, c \equiv a_1^{-1}\pmod{m_1}). Теперь решение находится умножением полученного сравнения на c:

x \equiv c a_1 x\equiv c b_1\equiv a_1^{-1} b_1\pmod {m_1}.

Практическое вычисление значения c можно осуществить разными способами: с помощью теоремы Эйлера, алгоритма Евклида, теории цепных дробей (см. алгоритм) и др. В частности, теорема Эйлера позволяет записать значение c в виде:

c \equiv a_1^{-1}\equiv a_1^{\varphi(m_1)-1}\pmod {m_1}.

Пример: решим уравнение 4x\equiv 26\pmod {22}. Здесь d = 2, поэтому по модулю 22 сравнение имеет два решения. Заменим 26 на 4, сравнимое с ним по модулю 22, и затем сократим все 3 числа на 2:

2x \equiv 2\pmod {11}

Поскольку 2 взаимно просто с модулем 11, можно сократить левую и правую части на 2. В итоге получаем одно решение по модулю 11: x\equiv 1\pmod {11}, эквивалентное двум решениям по модулю 22: x\equiv 1\pmod {22};\ x\equiv 12\pmod {22}.

Сравнения второй степени

Решение сравнений второй степени сводится к выяснению, является ли данное число квадратичным вычетом (с помощью квадратичного закона взаимности) и последующему вычислению квадратного корня по данному модулю.

История

В значительной степени теория делимости и вычетов была создана Эйлером. Сравнения по модулю впервые использовались Гауссом в его книге «Арифметические исследования», 1801 год. Он же предложил утвердившуюся в математике символику для сравнений.

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Кольцо вычетов" в других словарях:

  • Кольцо (алгебра) — Кольцо это множество, на котором заданы две операции, «сложение» и «умножение», со свойствами, напоминающими сложение и умножение целых чисел. Содержание 1 Определения 2 Связанные определения 3 Простейшие свойства …   Википедия

  • Кольцо (множество) — Кольцо это множество, на котором заданы две операции, «сложение» и «умножение», со свойствами, напоминающими сложение и умножение целых чисел. Содержание 1 Определения 2 Связанные определения 3 Простейшие свойства …   Википедия

  • Кольцо (математика) — У этого термина существуют и другие значения, см. Кольцо. В абстрактной алгебре кольцо  это один из наиболее часто встречающихся видов алгебраической структуры. Простейшими примерами колец являются алгебры чисел (целых, вещественных,… …   Википедия

  • Кольцо алгебраическое — Кольцо алгебраическое, одно из основных понятий современной алгебры. Простейшими примерами К. могут служить указанные ниже системы (множества) чисел, рассматриваемые вместе с операциями сложения и умножения: 1) множество всех целых положительных …   Большая советская энциклопедия

  • Кольцо —         алгебраическое, одно из основных понятий современной алгебры. Простейшими примерами К. могут служить указанные ниже системы (множества) чисел, рассматриваемые вместе с операциями сложения и умножения: 1) множество всех целых положительных …   Большая советская энциклопедия

  • Кольцо когомологий — Гомология  одно из основных понятий алгебраической топологии. Замкнутая линия гомологична нулю, если она ограничивает кусок поверхности, который отделяется от неё, если мы произведём разрез по этой линии. Например, на сфере любая замкнутая линия… …   Википедия

  • Мультипликативная группа кольца вычетов — Приведённая система вычетов по модулю m множество всех чисел полной системы вычетов по модулю m, взаимно простых с m. Приведённая система вычетов по модулю m состоит из φ(m) чисел, где φ(·) функция Эйлера. В качестве приведённой системы вычетов… …   Википедия

  • АНАЛИТИЧЕСКОЕ КОЛЬЦО — кольцо ростков аналитич. функций в точке аналитического пространства. Более точно: пусть kесть поле с нетривиальным абсолютным значением (обычно предполагаемое полным) и есть fc алгебра степенных рядов от с коэффициентами в k, сходящихся в нек… …   Математическая энциклопедия

  • ЛОКАЛЬНОЕ КОЛЬЦО — коммутативное кольцо с единицей, имеющее единственный максимальный идеал. Если А Л. к. с максимальным идеалом то факторкольцо является полем и наз. полем вычетов Л. к. А. Примеры Л. к. Любое поле или кольцо нормирования является локальным.… …   Математическая энциклопедия

  • ДИСКРЕТНОГО НОРМИРОВАНИЯ КОЛЬЦО — дискретно нормированное кольцо, кольцо с дискретным нормированием, т. е. область целостности с единицей, в к рой существует такой элемент я, что любой ненулевой идеал порождается нек рой степенью элемента я; такой элемент наз. униформизирующим и… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»