Коаксиальный кабель

Коаксиальный кабель

Коаксиа́льный ка́бель (от лат. co — совместно и axis — ось, то есть «соосный»), также известный как коаксиал (от англ. coaxial), — электрический кабель, состоящий из расположенных соосно центрального проводника и экрана. Обычно служит для передачи высокочастотных сигналов. Изобретён и запатентован в 1880 году британским физиком Оливером Хевисайдом.

Телевизионный коаксиальный кабель типа RG-59
Устройство коаксиального кабеля
1 — внутренний проводник,
2 — изоляция (сплошной полиэтилен),
3 — внешний проводник,
4 — оболочка (светостабилизированный полиэтилен)

Содержание

Устройство

Коаксиальный кабель (см. рисунок) состоит из:

  • 4 (A) — оболочки (служит для изоляции и защиты от внешних воздействий) из светостабилизированного (то есть устойчивого к ультрафиолетовому излучению солнца) полиэтилена, поливинилхлорида, повива фторопластовой ленты или иного изоляционного материала;
  • 3 (B) — внешнего проводника (экрана) в виде оплетки, фольги, покрытой слоем алюминия пленки и их комбинаций, а также гофрированной трубки, повива металлических лент и др. из меди, медного или алюминиевого сплава;
  • 2 (C) — изоляции, выполненной в виде сплошного (полиэтилен, вспененный полиэтилен, сплошной фторопласт, фторопластовая лента и т. п.) или полувоздушного (кордельно-трубчатый повив, шайбы и др.) диэлектрического заполнения, обеспечивающей постоянство взаимного расположения (соосность) внутреннего и внешнего проводников;
  • 1 (D) — внутреннего проводника в виде одиночного прямолинейного (как на рисунке) или свитого в спираль провода, многожильного провода, трубки, выполняемых из меди, медного сплава, алюминиевого сплава, омеднённой стали, омеднённого алюминия, посеребрённой меди и т. п.

Благодаря совпадению осей обоих проводников у идеального коаксиального кабеля оба компонента электромагнитного поля полностью сосредоточены в пространстве между проводниками (в диэлектрической изоляции) и не выходят за пределы кабеля, что исключает потери электромагнитной энергии на излучение и защищает кабель от внешних электромагнитных наводок. В реальных кабелях ограниченные выход излучения наружу и чувствительность к наводкам обусловлены отклонениями геометрии от идеальности.

История создания

  • 1855 год — Уильям Томсон рассматривает коаксиальный кабель и получает формулу для погонной ёмкости.[1]
  • 1880 год — Оливер Хевисайд получает британский патент № 1407 на коаксиальный кабель.[2]
  • 1884 год — фирма Siemens & Halske патентует коаксиальный кабель в Германии (патент № 28978, 27 марта 1884).[3]
  • 1894 годНикола Тесла запатентовал электрический проводник для переменных токов (патент № 514167).
  • 1929 год — Ллойд Эспеншид (англ. Lloyd Espenschied) и Герман Эффель из AT&T Bell Telephone Laboratories запатентовали первый современный коаксиальный кабель.
  • 1936 год — AT&T построила экспериментальную телевизионную линию передачи на коаксиальном кабеле, между Филадельфией и Нью-Йорком.
  • 1936 год — первая телепередача по коаксиальному кабелю с Берлинских Олимпийских Игр в Лейпциге.
  • 1936 год — между Лондоном и Бирмингемом почтовой службой (теперь компания BT) проложен кабель на 40 телефонных номеров.
  • 1941 год — первое коммерческое использование системы L1 в США, компанией AT&T. Между Миннеаполисом (Миннесота) и Стивенс Пойнт (Висконсин) запущен ТВ-канал и 480 телефонных номеров.
  • 1956 год — проложена первая трансатлантическая коаксиальная линия, TAT-1.

Применение

Основное назначение коаксиального кабеля — передача высокочастотного сигнала в различных областях техники:

  • системы связи;
  • вещательные сети;
  • компьютерные сети;
  • антенно-фидерные системы;
  • АСУ и другие производственные и научно-исследовательские технические системы;
  • системы дистанционного управления, измерения и контроля;
  • системы сигнализации и автоматики;
  • системы объективного контроля и видеонаблюдения;
  • каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.);
  • внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры;
  • каналы связи в бытовой и любительской технике;
  • военная техника и другие области специального применения.

Кроме канализации сигнала, отрезки кабеля могут использоваться и для других целей:

Существуют коаксиальные кабели для передачи низкочастотных сигналов (в этом случае оплётка служит в качестве экрана) и для постоянного тока высокого напряжения. Для таких кабелей волновое сопротивление не нормируется.

Классификация

По назначению — для систем кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д.

По волновому сопротивлению (хотя волновое сопротивление кабеля может быть любым), стандартными являются пять значений по российским стандартам и три по международным:

  • 50 Ом — наиболее распространённый тип, применяется в разных областях радиоэлектроники. Причиной выбора данного номинала была, прежде всего, возможность передачи радиосигналов c небольшими потерями в кабеле, а также близкие к предельно достижимым показания электрической прочности и передаваемой мощности;[4]
  • 75 Ом — распространённый тип, применяется преимущественно в телевизионной и радиотехнике (был выбран по причине[источник не указан 252 дня]меньшего ослабления сигнала по сравнению с 50 Ом кабелем и хорошего согласования с волновым сопротивлением наиболее распространенного типа антенн — полуволнового диполя (73 ом); при этом потери в кабеле ниже, чем для 50 Ом);
  • 100 Ом — применяется редко, в импульсной технике и для специальных целей;
  • 150 Ом — применяется редко, в импульсной технике и для специальных целей, международными стандартами не предусмотрен;
  • 200 Ом — применяется крайне редко, международными стандартами не предусмотрен;
  • Имеются и иные номиналы; кроме того, существуют коаксиальные кабели с ненормируемым[источник не указан 666 дней] волновым сопротивлением: наибольшее распространение они получили в аналоговой звукотехнике.

По диаметру изоляции:

  • субминиатюрные — до 1 мм;
  • миниатюрные — 1,5—2,95 мм;
  • среднегабаритные — 3,7—11,5 мм;
  • крупногабаритные — более 11,5 мм.

По гибкости (стойкость к многократным перегибам и механический момент изгиба кабеля): жёсткие, полужёсткие, гибкие, особогибкие.

По степени экранирования:

  • со сплошным экраном
    • с экраном из металлической трубки
    • с экраном из лужёной оплётки
  • с обычным экраном
    • с однослойной оплёткой
    • с двух- и многослойной оплёткой и с дополнительными экранирующими слоями
  • излучающие кабели, имеющие намеренно низкую (и контролируемую) степень экранировки

Обозначения

Обозначения советских кабелей

По ГОСТ 11326.0-78 марки кабелей должны состоять из букв, означающих тип кабеля, и трёх чисел (разделённых дефисами).

Первое число означает значение номинального волнового сопротивления.

Второе число означает: 

  • для коаксиальных кабелей — значение номинального диаметра по изоляции, округлённое до ближайшего меньшего целого числа для диаметров более 2 мм (за исключением диаметра 2,95 мм, который должен быть округлен до 3 мм, и диаметра 3,7 мм, который округлять не следует);
  • для кабелей со спиральными внутренними проводниками — значение номинального диамет­ра сердечника;
  • для двухпроводных кабелей с проводниками в отдельных экранах — значение диаметра по изоляции, округлённое так же, как и для коаксиальных кабелей;
  • для двухпроводных кабелей с проводниками в общей изоляции или скрученных из отдельно изолированных проводников — значение наибольшего размера по заполнению или диаметра по скрутке.

Третье — двух- или трёхзначное число — означает: первая цифра — группу изоляции и катего­рию теплостойкости кабеля, а последующие цифры означают порядковый номер разработки. Кабелям соответствующей теплостойкости присвоено следующее цифровое обозначение:

  • 1 — обычной теплостойкости со сплошной изоляцией;
  • 2 — повышенной теплостойкости со сплошной изоляцией;
  • 3 — обычной теплостойкости с полувоздушной изоляцией;
  • 4 — повышенной теплостойкости с полувоздушной изоляцией;
  • 5 — обычной теплостойкости с воздушной изоляцией;
  • 6 — повышенной теплостойкости с воздушной изоляцией;
  • 7 — высокой теплостойкости.

К марке кабелей повышенной однородности или повышенной стабильности параметров в конце через тире добавляют букву С.

Наличие буквы А («абонентский») в конце названия обозначает пониженное качество кабеля — отсутствие части проводников, составляющих экран.

Пример условного обозначения радиочастотного коаксиального кабеля с номи­нальным волновым сопротивлением 50 Ом, со сплошной изоляцией обычной теплостойкости, номинальным диаметром по изоляции 4,6 мм и номером разработки 1 «Кабель РК 50-4-II ГОСТ (ТУ)*».

Старые обозначения советских кабелей

В 1950—1960-х годах в СССР применялась такая маркировка кабелей, в обозначении которой отсутствовали значимые компоненты. Маркировка состояла из букв «РК» и условного номера разработки. Например, обозначение «РК-50» означает не 50-омный кабель, а просто кабель с порядковым номером разработки «50», а его волновое сопротивление равно 157 Ом.[5]

Международные обозначения

Системы обозначений в разных странах устанавливаются международными, национальными стандартами, а также собственными стандартами предприятий-изготовителей (наиболее распространённые серии марок RG, DG, SAT).[6]

Категории

Кабели делятся по шкале Radio Guide. Наиболее распространённые категории кабеля:

  • RG-11 и RG-8 — «толстый Ethernet» (Thicknet), 75 Ом и 50 Ом соответственно. Стандарт 10BASE-5;
  • RG-58 — «тонкий Ethernet» (Thinnet), 50 Ом. Стандарт 10BASE-2:
  • RG-58/U — сплошной центральный проводник,
  • RG-58A/U — многожильный центральный проводник,
  • RG-58C/U — военный кабель;
  • RG-59 — телевизионный кабель (Broadband/Cable Television), 75 Ом. Российский аналог РК-75-х-х («радиочастотный кабель»);
  • RG-6 — телевизионный кабель (Broadband/Cable Television), 75 ом. Кабель категории RG-6 имеет несколько разновидностей, которые характеризируют его тип и материал исполнения. Российский аналог РК-75-х-х;
  • RG-11- магистральный кабель, практически незаменим, если требуется решить вопрос с большими расстояниями. Этот вид кабеля можно использовать даже на расстояниях около 600 м. Укреплённая внешняя изоляция позволяет без проблем использовать этот кабель в сложных условиях (улица, колодцы). Существует вариант S1160 с тросом, который используется для надёжной проброски кабеля по воздуху, например, между домами;
  • RG-62 — ARCNet, 93 Ом.

«Тонкий» Ethernet

Был наиболее распространённым кабелем для построения локальных сетей. Диаметр примерно 6 мм и значительная гибкость позволяли ему быть проложенным практически в любых местах. Кабели соединялись друг с другом и с сетевой платой в компьютере при помощи T-коннектора BNC. Между собой кабели могли соединяться с помощью I-коннектора BNC (прямое соединение). На обоих концах сегмента должны быть установлены терминаторы. Поддерживает передачу данных до 10 Мбит/с на расстояние до 185 м.

«Толстый» Ethernet

Более толстый, по сравнению с предыдущим, кабель — около 12 мм в диаметре, имел более толстый центральный проводник. Плохо гнулся и имел значительную стоимость. Кроме того, при присоединении к компьютеру были некоторые сложности — использовались трансиверы AUI (Attachment Unit Interface), присоединённые к сетевой карте с помощью ответвления, пронизывающего кабель, т. н. «вампирчики». За счёт более толстого проводника передачу данных можно было осуществлять на расстояние до 500 м со скоростью 10 Мбит/с. Однако сложность и дороговизна установки не дали этому кабелю такого широкого распространения, как RG-58. Исторически фирменный кабель RG-8 имел жёлтую окраску, и поэтому иногда можно встретить название «Жёлтый Ethernet» (англ. Yellow Ethernet).

Вспомогательные элементы коаксиального тракта

  • Коаксиальные разъёмы — для подключения кабелей к устройствам или их сочленения между собой, иногда кабели выпускаются из производства с установленными разъёмами.
  • Коаксиальные переходы — для сочленения между собой кабелей с непарными друг другу разъёмами.
  • Коаксиальные тройники, направленные ответвители и циркуляторы — для разветвлений и ответвлений в кабельных сетях.
  • Коаксиальные трансформаторы — для согласования по волновому сопротивлению при соединении кабеля с устройством или кабелей между собой.
  • Оконечные и проходные коаксиальные нагрузки, как правило, согласованные — для установления нужных режимов волны в кабеле.
  • Коаксиальные аттенюаторы — для ослабления уровня сигнала в кабеле до необходимого значения.
  • Ферритовые вентили — для поглощения обратной волны в кабеле.
  • Грозоразрядники на базе металлических изоляторов или газоразрядных устройств — для защиты кабеля и аппаратуры от атмосферных разрядов.
  • Коаксиальные переключатели, реле и электронные коммутирующие коаксиальные устройства — для коммутации коаксиальных линий.
  • Коаксиально-волноводные и коаксиально-полосковые переходы, симметрирующие устройства — для состыковки коаксиальных линий с волноводными, полосковыми и симметричными двухпроводными.
  • Проходные и оконечные детекторные головки — для контроля высокочастотного сигнала в кабеле по его огибающей.

Основные нормируемые характеристики

Расчёт характеристик

Номограмма для определения волнового сопротивления кабеля.

Определение погонной ёмкости, погонной индуктивности и волнового сопротивления коаксиального кабеля по известным геометрическим размерам проводится следующим образом.

Сначала необходимо измерить внутренний диаметр D экрана, сняв защитную оболочку с конца кабеля и завернув оплетку (внешний диаметр внутренней изоляции). Затем измеряют диаметр d центральной жилы, сняв предварительно изоляцию. Третий параметр кабеля, который необходимо знать для определения волнового сопротивления, — относительная диэлектрическая проницаемость ε материала внутренней изоляции.

Погонная ёмкость Chсистеме СИ, результат выражен в фарадах на метр) вычисляется[7] по формуле ёмкости цилиндрического конденсатора:

C_h = \frac{2 \pi \varepsilon_0 \varepsilon}{\ln(D/d)},

где ε0 — электрическая постоянная.

Погонная индуктивность Lh (в системе СИ, результат выражен в генри на метр) вычисляется[7] по формуле

L_h = \frac{\mu_0 \mu}{2 \pi} \ln(D/d),

где μ0 — магнитная постоянная, μ — относительная магнитная проницаемость изоляционного материала, которая во всех практически важных случаях близка к 1.

Волновое сопротивление коаксиального кабеля в системе СИ[8]:

Z = \sqrt{\frac{L_h}{C_h}} = \frac{1}{2\pi}\sqrt{\frac{\mu\mu_0}{\varepsilon\varepsilon_0}}\ln\frac{D}{d}\approx\frac {\lg(D/d)}{\sqrt{\varepsilon}}\cdot 138~\Omega

(приближённое равенство справедливо в предположении, что μ = 1).

Волновое сопротивление коаксиального кабеля можно также определить по номограмме, приведённой на рисунке. Для этого необходимо соединить прямой линией точки на шкале D/d (отношения внутреннего диаметра экрана и диаметра внутренней жилы) и на шкале ε (диэлектрической проницаемости внутренней изоляции кабеля). Точка пересечения проведённой прямой со шкалой R номограммы соответствует искомому волновому сопротивлению.

Скорость распространения сигнала в кабеле вычисляется по формуле

v=\frac{1}{\sqrt{\varepsilon\varepsilon_0 \mu\mu_0}} = \frac{c}{\sqrt{\varepsilon \mu}},

где c — скорость света. При измерениях задержек в трактах, проектировании кабельных линий задержек и т. п. бывает полезно выражать длину кабеля в наносекундах, для чего используется обратная скорость сигнала, выраженная в наносекундах на метр: 1/v = ε·3,33 нс/м.

Предельное электрическое напряжение, передаваемое коаксиальным кабелем, определяется электрической прочностью S изолятора (в вольтах на метр), диаметром внутреннего проводника (поскольку максимальная напряжённость электрического поля в цилиндрическом конденсаторе достигается возле внутренней обкладки) и в меньшей степени диаметром внешнего проводника:

 V_p = \frac{Sd}{2} \ln(D/d).

Интересные факты

Кабели с разрывами в экранирующей оболочке используются в качестве распределённых антенн.[источник не указан 123 дня]

См. также

Примечания

  1. Thomson, W., [Lord Kelvin]. On the electro-statical capacity of a Leyden phial and of a telegraph wire insulated in the axis of a cylindrical conducting sheath // Phil. Mag. — IX. — 1885. — P. 531—535.
  2. Paul J. Nahin. Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. JHU Press, 2002. — P. xvi.
  3. Wilfried Feldenkirchen. Werner von Siemens — Inventor and International Entrepreneur. — 1994. — ISBN 0-8142-0658-1
  4. Изюмова, Свиридов, 1975, С. 51-52
  5. Russian Hamradio — Высокочастотные кабели старых типов
  6. Система обозначения коаксиальных кабелей фирмы HUBER&SUHNER
  7. 1 2 Pozar, David M. Microwave Engineering. Addison-Wesley Publishing Company, 1993. ISBN 0-201-50418-9.
  8. Elmore William C. Physics of Waves. — 1969. — ISBN 0-486-64926-1

Литература

  • Н. И. Белоруссов, И. И. Гроднев. Радиочастотные кабели. 2-е изд., перераб. — М.-Л.: Госэнергоиздат, 1959.
  • Т. И. Изюмова, В. Т. Свиридов. Волноводы, коаксиальные и полосковые линии. — М.: Энерия, 1975.
  • Д. Я. Гальперович, А. А. Павлов, Н. Н. Хренков. Радиочастотные кабели. — М.: Энергоатомиздат, 1990.
  • Электрические кабели, провода и шнуры: Справочник/Н. И. Белоруссов, А. Е. Саакян, А. И. Яковлева: Под ред. Н. И. Белоруссова. — 5 изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 536 с.; ил.
  • Любительская радиосвязь на КВ. Под ред. Б. Г. Степанова. — М.: Радио и связь, 1991.
  • Справочная книга радиолюбителя-конструктора. Под ред. Н. И. Чистякова. — М.: Радио и связь, 1990.
  • Дж. Дэвис, Дж. Дж. Карр. Карманный справочник радиоинженера. Пер. с англ. — М.: Додэка-XXI, 2002.
Нормативно-техническая документация
  • ГОСТ 11326.0-78. Кабели радиочастотные. Общие технические условия.
  • IEC 60078(1967). Кабели радиочастотные коаксиальные. Волновое сопротивление и размеры.
  • IEC 60096-1(1986). Кабели радиочастотные. Часть 1: Общие требования и методы измерений.
  • IEC 60096-2(1961). Кабели радиочастотные. Часть 2: Частные технические условия на кабели.
  • IEC 60096-3(1982). Кабели радиочастотные. Часть 3: Общие требования и испытания одножильных коаксиальных кабелей для использования в кабельных распределительных системах.
  • MIL-C-17 Coaxial Cable (военный стандарт США).
  • МЭК 78-67, МЭК 96-0-70, МЭК 96-1-86, МЭК 96-3-82.
  • ТУ 16.К99-006-2001, ТУ16-505.858-81, ТУ16-705.125-79, ТУ16-505.166-77.

Ссылки



Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Коаксиальный кабель" в других словарях:

  • коаксиальный кабель — Кабель, основные группы которого являются коаксиальными парами. [ГОСТ 15845 80] коаксиальный кабель несимметричный коаксиальный кабель Самый распространенный в практике передачи видеосигналов. Частотная зависимость характеристики затухания от… …   Справочник технического переводчика

  • КОАКСИАЛЬНЫЙ КАБЕЛЬ — КОАКСИАЛЬНЫЙ КАБЕЛЬ, кабель, состоящий из проводника, проходящего по центру, окруженного слоем изоляции и трубчатым покрытием. В большинстве телевизионных приемников антенны подключают посредством коаксиальных кабелей. Для систем дальней связи… …   Научно-технический энциклопедический словарь

  • коаксиальный кабель RG-58 — Тонкий двойной экранированный кабель, используемый при передаче в сети Ethernet. Аналогично другим кабелям, изготовленным специально для сети Ethernet, имеет сопротивление 50 Ом. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по… …   Справочник технического переводчика

  • коаксиальный кабель RG-62 — Двойной экранированный кабель, используемый в сети Arcnet, обладает сопротивлением 93 Ом. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN RG 62 coaxial… …   Справочник технического переводчика

  • КОАКСИАЛЬНЫЙ КАБЕЛЬ — (от лат. со совместно и axis ось) представляет собой два соосных гибких металлического цилиндра, разделенных диэлектриком. Служит для передачи высокочастотных (до нескольких ГГц) сигналов. Линии связи на основе коаксиального кабеля… …   Большой Энциклопедический словарь

  • Коаксиальный кабель — 124. Коаксиальный кабель Кабель, основные группы которого являются коаксиальными парами Источник: ГОСТ 15845 80: Изделия кабельные. Термины и определения оригинал документа 3.7 коаксиальный кабель (coaxial cable): Кабель, содержащий одну или …   Словарь-справочник терминов нормативно-технической документации

  • КОАКСИАЛЬНЫЙ КАБЕЛЬ — [от лат. со (cum) совместно и axis ось] кабель связи из одной или неск. (до 20) коаксиальных пар, в к рых оба проводника внутр. и внеш. представляют собой соосные цилиндры, разделённые слоем изоляции (полиэтиленовой, воздушно полиэтиленовой,… …   Большой энциклопедический политехнический словарь

  • коаксиальный кабель — (от лат. со  совместно и axis  ось), представляет собой два соосных гибких металлических цилиндра, разделённых диэлектриком. Служит для передачи ВЧ (до нескольких ГГц) сигналов. Линии связи на основе коаксиального кабеля характеризуются высокой… …   Энциклопедический словарь

  • коаксиальный кабель — bendraašis kabelis statusas T sritis automatika atitikmenys: angl. coaxial cable; concentric cable vok. Koaxialkabel, n rus. коаксиальный кабель, m pranc. câble coaxial, m …   Automatikos terminų žodynas

  • коаксиальный кабель — bendraašis kabelis statusas T sritis fizika atitikmenys: angl. coaxial cable vok. Koaxialkabel, n rus. коаксиальный кабель, m pranc. câble coaxial, m …   Fizikos terminų žodynas


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»